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A characterization of Tchebycheff systems is given, in terms of Weak
Tchebycheff systems.

Let M be a set of real numbers. A system {Yo '00" Yn} of real-valued
functions defined on M is called a Tchebycheff system or T-system (Weak
Tchebycheff system or WT-system), provided that M has at least n + I
elements, and for every choice of points to < t1 < ... < tn of M, the
determinant

D(yo '00" Yn/to '00" tn) = det YltJ; i,j = 0"00' n

is strictly positive (nonnegative). If {Yo '00" Yk} is aT-system (WT-system)
for k = 0,... , n, then {Yo '00" Yn} is called a Complete Tchebycheff system or
CT-system (Complete Weak Tchebycheff system or CWT-system). These
definitions are consistent with the terminology employed in [1], but note that
no assumptions of continuity have been made.

A system {Yo '00" Yn} of real-valued functions defined on M will be called
"substantial," if for any interval (a, b), the functions Yo "00' Yn are linearly
independent on M n (a, b). In this paper we shall prove the following

THEOREM. Let {yo '00" Yn} be a system of real-valued functions defined on
a dense subset M ofan open interval. The following propositions are equivalent:

(a) The system {yo '00" Yn} is a T-system on M.

(b) The system {yo '00" Yn} is a substantial WT-system on M, and its
linear span contains a function which does not vanish at any point of M.

(c) The system {Yo '00" Yn} is a substantial WT-system on M, and not all
the functions Yi vanish simultaneously at any given point ofM.
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A particular case of this theorem was proved by Bartelt (cf. [2, Theorems I
and 2]). Its proof will be carried out with the help of the following

LEMMA. If {Yo ,... , Yn} is a substantial CWT-system on a dense subset M
of an open interval, andfor some point to of M, yo(to) = 0, then Yr(to) = °for
r = 0, I, ... , n.

Proof of Lemma. We proceed by induction on r. The assertion is true for
r = °by hypothesis. Assume it to be true for r ~ m, and let r = m + I.
Since the system is substantial there exists a set {ao , , am}, ao < a1 < ... <
am < to , of points of M, such that D(yo ,... , Ym/ao , , am) = A > 0.

Let Ui(t) = D(yo ,... , Ym/ao ,... , ai- 1 , t, ai+1 , •.• , am)' Thus ui(ai) = ° if
i # j, and ui(a,) = A > 0, whence

m

D(uo ,... , um/ao ,... , am) = TI u,(ai) = Am+! > 0.
i~O

(I)

It is now easy to see that {uo ,... , um} is a substantial WT-system on M.
In\1eed, since the column matrix (Uj ;j = 0'00" m) admits of a representation
of the form

(Uj ;j = 0,... , m) = Q . (Yi ,j = 0,... , m),

where Q is the transition matrix, it is clear that for any choice to < ... < tm

of points of M,

D(uo ,... , um/to ,... , tm) = (det Q) . D(yo '00" Ym/to ,... , tm), (2)

In particular, setting t i = ai ; i = 0,... , m, we see from (I) and the definition
of A, that A"'H = (det Q) . A. Thus det Q = Am > 0, and the assertion
readily follows from (2).

Since, as we have just seen, {uo "00' um} is a substantial WT-system on M,
and moreover u'" ~ °to the right of am, it is readily seen that there is a
point t1of M, to < t1, such that Um(t1) > 0, i.e., D(yo ,... , Ym/ao ,... , am- 1, t1) =

B >0.
We are now.. ready to prove that Ym+l(to) = 0. In fact, since Yi(tO) = 0;

i = 0,... , m, °~ D(yo ,... , Ym+1/ao ,... , am , to) = A . Ym~1(tO)' Since A > 0,
Ym+!(to) ~ 0. On the other hand, °~ D(yo ,... , Ym+1/ao ,... , am- 1 , to, t1) =

- B . Ym+1(to)' Since B > 0, Ym+1(to) ~ 0, and the conclusion follows. Q.E.D.

Proof of Theorem. The implication a ~ b is a direct consequence of [4],
Corollary 2. The implication b ~ c being trivial, only c ~ a remains to be
proved.

We shall proceed by induction on n. The assertion is clearly true if n = 0.
Assume it to be true for n == m, and let n = m + I. Assume that there is a
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set {qu ,... , qm+l} of points of M, qo < ... <-: qm+l , such that D(yo ,... , Ym-; 1/
qo '00', qm 11) = O. Since the system is substantial, there exists a set {so '00" 5"'1)
of points of M, with qm! 1 Su ... < 5"", , such that A DCFu '00" Ym!'!
So "00' Sm+l) > O. Defining u,{t) = D(yo '00" Ym+llso ,.", Si __ 1 , t, Si--l '00" Sm' 1)'

we conclude, as in the proof of our Lemma, that {uo ,.", um + l } is a substantial
WT-system on M, and a basis of the linear span of {Yo '00" y"tel:' Let
{to "00' tJ be a set of points of M such that to <... ti < So' Then

r
m+l J

== f1 u;(Sj) D(uo '00" udto '00" til
J ~:,t : I

= Atn+l-iD(uo '00" udto '00" til.

Since A > 0, we conclude that {uo "00' Ui} is a substntial WT-system on the
set of points of M to the left of So . Were Uo to vanish at some point Po of this
set, by the lemma, we would conclude that Ui(PU) = 0; i =_c 0'00" m -1- I.
Thus all the functions Yi would vanish at Po, in contradiction of (c). Hence,
Uo > 0 on the set of points of M to the left of So , and therefore the system
{uo '00" um} satisfies the conditions of (c) on M n (--- 00, so). By inductive
hypothesis, it is therefore a T-system thereon. It is also clear that
D(uo '00', umt-Ilqo "00' qm+l) c.=, O.

Consider now the function yet) = D(uo ,... , um+l/t, ql ,,,., qm+l)' which is
clearly in the linear span of the system {uo '00" um+1}. The coefficient of Um+ 1 is
D(uo '00" Um/ql ,,,., qm) > O. Thus y is a nontrivial linear combination of the
functions Uo '00" Um+l' Since these functions form a substantial system,
it follows that there is a point t* of M, qo < t* < ql , such that y(t*) 0,
i.e., D(uo ,... , um+1/t*, ql '00" qm) > O. Let qi = t*, qt = qi, i = 1'00" m + I,
and define viet) = D(uo '00" Um t l/qi "00' qtl , t, qtt1 '00" q;;'+I)' Proceeding in
the same way as for the functions Ui, it can be shown that {va '00" l'tn~l} is a
CWT-system on M n (- 00, t*), and a basis of the linear span of {uo '00" Um+l}'
However, vo(qo) = D(uo '00" um+l/qo '00" qm+l) = O. Since qo E M n (- 00, t*),
our lemma implies that all the functions Vi vanish at qo . Since the functions Vi

form a basis of the linear span of the functions Yi, we thus conclude that
y;(qo) = 0, i = 0,,00, m-l-- I, which contradicts the hypotheses of (c). Q.E.D.

Remark. Note that this theorem generalizes Theorem 3(b) of [5].
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